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Abstract—There is high interest in up-scaling capacities of
renewable energy sources such as wind and solar. However,
variability and uncertainty in power output is a major concern
and forecasting is, therefore, a top priority. Advancements in
forecasting can potentially limit the impact of fluctuations in solar
power generation, specifically in cloudy days when the variability
and dynamics are the largest. We propose SIPS, Solar Irradiance
Prediction System, a novel sensing infrastructure using wireless
sensor networks (WSNs) to enable sensing of solar irradiance for
solar power generation forecasting. In this paper, we report the
findings of a deployment of a hierarchical WSN system consisting
of 19 TelosB nodes equipped with solar irradiance sensors, and
5 MicaZ nodes equipped with GPS boards, deployed in the
vicinity of a 1 MW solar array. We evaluate different irradiance
sensor types and the performance of different novel prediction
methods using SIPS’ data and show that the spatial-temporal
cross-correlations between sensor node readings and solar array
output power exists and can be exploited to improve prediction
accuracy. Using this data for short-term solar forecasting for
cloudy days with very high dynamics in solar output power
generation –the worst case scenario for prediction–, we get an
average of 97.24% accuracy in our prediction for short time
horizon forecasting and 240% reduction of predicted normalized
root mean square error (NRMSE) compared to state-of-the-art
methods that do not use SIPS data.

Keywords—wireless sensor networks, solar energy forecasting,
sensor data processing, forecasting algorithms

I. INTRODUCTION

The increasing utilization of photovoltaics (PV) power systems
has created much interest in the technical and economic
impacts of the solar resource variability and uncertainty [1].
Much like wind power, the output from a PV plant is non-
dispatchable and variable in nature, and has high costs of
storage. Balancing the power grid in real time is a difficult
task since only limited low-cost storage and spinning reserves
are generally available. A sudden drop of the power level can
adversely affect the local grid stability and power quality, with
possible correlated effects on adjacent power nodes [2]. Ac-
curate forecasting techniques of power generation, especially
in the case of solar energy, are essential for a smart and
dynamic power grid that can absorb certain decreases of the
generated electrical power. To enable real-time dispatch, which
is an important component of successful solar power plant
operation, accurate short-term energy forecasting is critical.

To cope with dynamics, the PV power output is either
curtailed or backed-up by ancillary generators during high
variability conditions [1], [3]. To limit the variability impacts,
the need for accurate short-term forecasting is high on the
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agenda of the solar energy industry. With proper forecasting,
there are possibilities to reduce variability impacts by helping
the management of curtailment and ancillary generators [1].
Other possibilities can also arise with accurate short-term (sub-
minute) forecasting such as smoothing with ultra-capacitors
during large ramping events [4], [5], or increasing inverter
efficiency with Maximum Power Point Tracking (MPPT) [6]
using solar irradiance forecasted information. In this work,
we focus on two important time horizons for power plant
operation, real-time dispatch and, to a lesser degree, trading
(0-2 and 2-10 min ahead) [1].

Forecasting PV power output is a complex problem be-
cause solar irradiance is extremely sensitive to the presence
of clouds. Satellite observations do not have the spatial or
temporal frequency to provide cloud details involved in the
high frequency fluctuations of the solar irradiance. Although
sky imagers are great alternative tools to resolve the cloud
situation at the local level, problems still exist due to the glar-
ing caused by the circum-solar scattering of sunlight, severely
reducing the quality of small time scale resolutions [7], [8].
A single point sensor, such as the Eppley Precision Spectral
Pyranometer (PSP), does not adequately characterize large
power plants at small time scales because it is able to measure
solar irradiance at only one location and hence, it cannot
describe the net power output of a power plant covering a
large region. In addition, sky imagers and pyranometers are
costly devices, making it prohibitive to install in large numbers.
This necessitates a cheap, distributed infrastructure for sensing
cloud movement over spatio-temporal scales. Wireless sensor
networks (WSNs) have been deployed in a wide-variety of
monitoring applications [9], [10], [11] and offer a viable
alternative. However, even if using a WSN, it is first required
to have a relatively inexpensive sensor that consumes low
power and is capable of sensing solar irradiance with sufficient
spatial-temporal granularity over long periods of times. This
would enable deployment in large numbers for sensing over
the necessary spatio-temporal scales. In addition, the software
infrastructure within the sensor network should be capable of
high data delivery rates, support time synchronization over
large areas and ensure that the network lifetime is enough for
a long term application of the system.

In this paper, we describe the development of SIPS, a wire-
less network system to enable high-resolution solar irradiance
forecasts. To our knowledge, this is the first work of applying
wireless sensor networks for solar irradiance estimation. Our
goal is to develop a forecasting infrastructure using a deploy-
ment of sensor nodes distributed in the proximity of a 1 MW
PV solar power plant. We propose several forecasting models
that utilize multiple readings from spatially distributed sensors
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to compute future predicted values of the plant solar power out-
put at short time granularity. We demonstrate the forecasting
approach by comparing to the actual solar plant output power
and evaluating the performance of our forecasting models by
comparing to state-of-the-art prediction methods without using
SIPS data. The contributions of this paper are as follows:

• We tested commercial-off-the-shelf (COTS) light sensors
under real outdoor deployment conditions, and evaluated their
effectiveness in matching the performance of a NIST calibrated
instrument, an Eppley PSP radiometer, over four months.

• We designed, built, deployed and experimented in an
outside deployment for several weeks, SIPS, a new hierarchi-
cal wireless sensor network system comprised of: (a) Solar
Irradiance Motes (SIMs), which integrate the COTS light
sensor assembled with a neutral density filter on a new board
interfacing with a TelosB sensor node; and (b) Gateway Time-
Synchronizer (GTS) motes, which consist of MicaZ sensor
nodes that provide time synchronization using GPS data to
a group of SIMs.

• We developed novel forecasting models able to predict the
output of a 1 MW solar plant within a specific time horizon
using our sensor data. We evaluated our forecasting models by
comparing them to state-of-the-art prediction schemes, such
as time series ANN prediction models, showing that our best
prediction model can provide average accuracy of 97.24%
(maximum of 99%) and reduce NRMSE prediction error by
an average of 240% (maximum of 426%) with respect to
prediction models that do not use SIM sensor data.

The rest of the paper is organized as follows: A review
of related work is provided in Section II. In Section III,
we explain our choice of irradiance sensor, hardware and
software infrastructure and we describe the correlation between
sensor values and solar plant energy output. In Section IV
we introduce our prediction models to perform solar energy
forecasting. In Section V, we evaluate the performance of our
solar energy prediction models. In Section VI we discuss some
training and time horizon issues. Finally, in Section VII, we
summarize our findings and conclude.

II. BACKGROUND AND RELATED WORK

Several solar irradiance forecast methodologies have been pre-
sented for various time horizons. Numerical weather prediction
(NWP) models have been tested [12], [13], [14], [15] for
medium-term solar forecasting of 6-hours to a few days ahead.
Satellite-based forecasts are competitive with NWP models for
less than 1–6 hours ahead [16]. Satellite models have also
been applied to 30-minute ahead forecasting [17]. Besides
these physics-based models, time-series based solar forecasting
methods have also been extensively applied, (e.g. [18], [19],
[20], [21], [22], [23], [24], [25]). In some of these time-
series applications, direct cloud information is not used [23],
[21], [19], [20], [25] while some incorporate cloud information
as exogenous inputs [22], [24]. The time-series forecasting
methodologies have been applied successfully for various time-
horizons including 1-hour [22], [23], [21], and 24-hours [20].

The conventional approach for short-term forecasting prob-
lem has been to use sky imagers. One particular type of sky im-
ager is the TSI-880 (TSI), developed by Yankee Environmental

Fig. 2: SIPS Architecture Overview

Systems [26]. The TSI is composed of a hemispherical mirror
with a CCD camera located above it. The mirror contains a
sun tracking shadow-band that continuously covers the mirror
from the direct sunlight in order to protect the camera from
the sun’s reflection. Recently, Chi et al. [7] used TSI images to
produce instantaneous values of Global Horizontal Irradiance
(GHI) single-point solar irradiance sensors located in the
University of California San Diego meteorological network.
They analyzed cloud field propagation by computing matching
errors of the future image given the current one translated
in the direction of the computed velocity field. Their results
show a mean forecasting error of ∼8.65% for sub-minute
time horizons (30 and 60 seconds) and ∼30% for a 5-
minute forecast. In our work, we reduced the sub-minute mean
forecast error by more than three times, and more than eight
times for best case scenario. In [8], cloud indices obtained from
the TSI built-in cloud classification algorithms and Infrared
Radiometric measurements were reported to improve results
for 1-hour forecasting of GHI. In terms of distributed infras-
tructure approaches relevant to solar irradiance monitoring at
short-time scales, [27] deployed 24 LI-COR irradiance sensors
around a 1MW PV plant in Hawaii. Data from the sensor
was collected using NI WSN-3212 module. The goal of the
paper was to study cloud movement, to be able to predict
short-term characteristics of the PV plant. The authors report
that they were unable to track cloud movement as the cloud
patterns appeared chaotic. In contrast, we show that by using
sensors at different locations we are able to determine a
correlation between cloud movement and solar plant output
power. In addition, our proposed choice of sensor is very
inexpensive (< $1 per irradiance sensor compared to the LI-
COR irradiance sensor (≈ $200)).

III. SIPS DESCRIPTION

In this section, we describe the motivation, hardware and soft-
ware components and deployment of SIPS, which is located
in the proximity of a 1 MW solar plant.

A. Motivation

Solar irradiance at the ground level depends on the presence of
specific gases in the atmosphere like CO2, H2O, etc., aerosols,
solar position and cloud cover. The most important factor for
solar irradiance at ground level, which directly maps to the
output power of a solar plant, is the cloud coverage. Clouds
are a random phenomenon and models for cloud movement
have been proven elusive [27], [28].
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Fig. 1: Solar power output for very cloudy (left) and clear sky conditions (right). On cloudy days, power increases/drops up to 700 kW.

Fig. 3: SIPS deployment overview

Predicting solar irradiance at ground level on a cloudy day
is a non-trivial and error prone process. Figure 1 shows the
output power of the solar plant on a representative day with
cloudy conditions and on a representative day with a clear sky.
It can be observed that the output of the solar array on a cloudy
day rapidly changes by substantial amounts within a short
period of time. Cloud cover alternating with cloud opening
cause a significant amount of variability in the power output
of a solar plant. In the cloudy day, output fluctuations of up
to 700 kW within a few minutes can be observed (e.g. 13:25
and 16:05), which is a drop/increase of 70% of the overall
output power of the plant. To be able to handle fluctuations
like this, a system for short-term prediction of solar irradiance
is critical.

B. System Architecture

SIPS comprises of many different components. Figure 2 shows
the architecture with our system components. First, a hier-
archical wireless sensor network system consisting of: (a)
Solar Irradiance Motes (SIMs) measuring the current solar
irradiance at the lowest level of the hierarchy, and (b) Gateway
Time-Synchronizer (GTS) nodes, that provide overall time
synchronization and data delivery to a group of SIMs. Second,
a data collection component running on the back-end, which

collects the information provided by all the GTS/SIM nodes as
well as the real-time solar plant energy output measurements
and stores it in a database for future use. Third, a data
processing component that takes the data collected, sanitize it
in case of missing sensing/power-plant data and performs on-
line model training (if required). Finally, a prediction model
to forecast the output of the solar plant for a specific time
horizon.

C. System Deployment

Our deployment consists of groups of 1 GTS connected to
many SIMs (in our deployment 3-4). All SIMs have single
hop connectivity to the GTS. Each group acts independently
from each other, since the distance between the different
GTS/SIMs group of nodes makes communication using low-
power radios infeasible. Figure 3 shows an overview of the
SIPS deployment.

To perform short-term solar irradiance prediction it is
required that a live sensor data stream is available. Our system
of 19 SIMs and 5 GTS nodes is deployed on rooftops in the
proximity of a 1 MW solar power plant. Sensed data from the
SIMs gets forwarded to the GTS, where the data is forwarded
to our server via the building’s Wifi (when available) or using
4G Wifi hotspots. SIMs are deployed on the roof-tops of
buildings, since it is imperative that the SIMs sensors do not
get occluded by shadows produced by infrastructure, such as
buildings and other structures. All SIMs deployed on the same
rooftop, get a spatial separation of approximately 70-80 meters
maximum in each direction from the GTS node (i.e. covering
a maximum length of 150 meters for the longest rooftops).
It is also possible to deploy our SIM motes on non roof-top
locations, but it is important that the sensors are not shadowed
by objects blocking the sunlight.

The area of the solar plant is 170 meters in width (West to
East) and 230 meters in length (North to South), covering an
area of approximately 10 acres. The array is comprised of 488
single-axis, solar trackers each with 10 PV panels. The SIMs
are deployed in clusters out of radio range from each other,
covering an arch of about 45◦ north-west around the solar field.
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Fig. 4: Global Horizontal Irradiance (GHI) from the Eppley PSP and voltage readings from solar irradiance sensors (PD333, OPT101P,
BPW21R and BS120E0F) measured using a datalogger. In this plot, the sky was cloudy from 05/25 - 05/30. Note the y-axes for GHI is in
W/m2, whereas the one for the SIM readings is in millivolt.

An ideal SIMs deployment would cover all geographical di-
rections around a solar field to monitor all approaching clouds.
Covering the proximity of a solar field that is in the correct
wind direction the majority of time is the desired approach.
To determine the ideal geographical direction of deployment,
we use wind speed and wind direction data available in the
National Oceanic and Atmospheric Administration (NOAA)
database. By covering the area where the cloud density is most
likely to approach, our sensor deployment acts as an early
warning system for solar energy prediction.

D. Hardware Infrastructure

The GTS node consists of a Crossbow MICAz connected to a
Nemsic MTS420/400CC sensor board. The MICAz has a low-
power ATmega128L micro controller, 128KB memory, 512KB
flash storage and a Texas Instruments CC2420 radio for wire-
less communications. Over a 51-pin expansion connector, the
MICAz is connected to a MTS420/400CC module containing
a GPS receiver as well as various other sensors. The MICAz
is connected via serial to a plug computer (or Raspberry Pi)
to get Internet access.

Our SIM is comprised of a Moteiv Tmote Sky module
interfaced with a custom board populated with three solar

irradiance sensors further explained in Section III-E. The
Moteiv Tmote Sky (or TelosB) module is comprised of an
ultra low power Texas Instruments MSP430 F1611 micro
controller featuring 10KB of RAM, 48KB of flash, 1024KB
of external flash and a Texas Instruments CC2420 radio for
wireless communications. For sampling external sensors, the
mote has 8 channels of 12 bit ADC inputs. These inputs
are exported through the expansion connectors on the mote.
The solar irradiance sensors are interfaced to the mote’s ADC
inputs.

The SIMs are deployed on top of buildings as described
in Section III-C. For reasons of redundancy and potential
differences in sensor hardware calibration, we are using three
irradiance sensors of the same type and take the average value
of the three sensors. Values with a difference larger than a
std. dev. from the average are discarded from the calculation
(reading may indicate a faulty sensor). A data packet of 18
bytes, containing a time stamp and values of three sensors, is
sent to a GTS node, where the collected data is transferred to
our servers.

We estimate the cost of a SIM node as the sum of a TMote
($80), sensor board ($10), water proof box ($15), utilities ($3)
and power sources (batteries or cords $10-20). This makes an
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Fig. 5: Scatter plots of Global Horizontal Irradiance (GHI) from the Eppley PSP and voltage readings from solar irradiance sensors (PD333,
OPT101P, BPW21R and BS120E0F). ρ indicates the Pearson’s correlation coefficient between GHI and sensor readings.

(a) Clear Sky (b) Cloudy Sky (c) Cloudy Sky (d) Clear Sky

Fig. 6: Images of the sky at noon from the total sky imager co-located with our sensors on particular days shown in Figure 4.

TABLE I: List of solar irradiance sensors.

Sensor Type Sensor Part# Spectral Range
Photodiode BPW21R 350-750nm
Photodiode BS120E0F 400-800nm

PIN Photodiode PD333 400-1100nm
Light to Voltage Converter OPT101 320-1100nm

overall cost of approximately $120 per SIM node. Our SIM
node is a self made prototype, a commercially manufactured
SIM node can be produced with lower costs and cheaper
components.

E. Solar Irradiance Sensors

We experimented with different kinds of light sensors before
narrowing down our choice of sensors for the Solar Irradiance
Motes. Table I lists four different types of sensors, which
were part of our extended evaluation, along with their spectral
bandwidth ranges. The photo-diode works as follows: when
light falls on the active area of the device, a photo-current
is generated proportional to the amount of incident light. By
connecting a load resistor (RL) across the photodiode, we can
measure the voltage across RL, which is proportional to the
amount of incident light. In our case, we use RL = 1kΩ. The
light to voltage converter is in IC form with integrated photo-
diodes and opamp circuitry. It operates on a supply voltage of
>2.7V same as the TelosB mote (3V, 2AA batteries), making
it suitable for use in the SIM. We created a PCB to mount
these sensors and measured the sensor voltage readings using
a Campbell Scientific CR1000 datalogger. Our sensors were
co-located with an Eppley Precision Spectral Pyranometer
(PSP) [29] and a Total Sky Imager (TSI). Eppley PSP is
a radiometer designed for the measurement of total solar
radiation (or GHI). Images of the sky are taken at 20 seconds

intervals at the solar observatory station using Yankee Envi-
ronmental Systems, Inc. TSI-880 instrument [26]. We recorded
readings from our sensors and the PSP for four consecutive
months. The goals of this evaluation were two-fold: (i) to
see how well our sensors measure the total solar radiation in
comparison to the Eppley PSP from the solar observatory, and
(ii) to see if these off-the-self sensors are able to withstand
the harsh conditions (temperature) of an outdoor deployment.
Figure 4 shows the readings of GHI from the Eppley PSP
and corresponding voltage readings from our solar irradiance
sensors for a representative subset of the days. Figure 5 shows
the scatter plots of the voltage readings from each sensor and
GHI. From Figures 4 and 5, we can observe that out of the 4
sensors, the PD333 output shows the best correlation with the
GHI. The BPW21R and BS120E sensors displayed a bimodal
output indicating that they are prone to saturation, and are
unable to capture the solar irradiance dynamics. The OPT101
sensor was also saturated, did not display any correlation.
Figure 6 shows a picture of the sky captured using the TSI.
From the sky images, we can see that our PD333 sensor was
able to function (correlate with GHI) correctly on days with
clear as well as cloudy skies. Based on this data, we decided to
proceed with the PD333 PIN photodiode sensor. To improve
the correlation between GHI and our sensor, we decided to
reduce the saturation effect using a neutral density filter. A
neutral density filter reduces and/or modifies intensity of all
wavelengths or colors of light equally, thus making it ideal for
purpose of reducing the saturation effects. From Figure 7, we
observe that the PD333 sensor shows even better correlation
with respect to GHI when we introduce a neutral density filter.
The Pearson’s coefficient between the two is 0.98, indicating
very good correlation. Thus, using the PD333 with a neutral
density filter is a good choice for inexpensive sensing of solar
irradiance.
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Fig. 7: Global Horizontal Irradiance (GHI) from the Eppley PSP and
voltage readings from PD333 sensor when using a neutral density
filter (Pearson Correlation ρ = 0.98).

F. Software Architecture

In this section, we describe the main components of our
software stack that is comprised of time synchronization,
data collection, data processing, training and data prediction.
Figure 8 shows an overview of our software stack.

1) Time Synchronization: While time synchronizing is crit-
ical for our task, our accuracy needs are not very demanding.
For our application, time synchronization accuracy needs only
to be in the order of high sub-seconds to correlate cloud
movement patterns. In addition, we need all sensor nodes to
be synchronized in order to forecast at sub-minute intervals. A
hard constraint in our design is that GTS/SIM nodes from one
area deployment (see Section III-C) cannot communicate with
nodes from other different areas due to being too far from each
other when using the CC2420 RF transceiver. However, all
nodes in the system must be synchronized at high sub-second
granularity of a common global clock. We explore a number
of options to achieve this (e.g. using the 4G hotspot clock,
running NTP, etc). We decided to use GPS boards on the GTS
nodes to achieve time synchronization among all GTS nodes,
since this provides a high accuracy common clock with no
bandwidth usage cost. Since we only need to deal with a clock
drift of 3.5 seconds every 24 hours on a TMote Sky [30], and
in our application all the SIMs are within radio communication
range of the GTS, we decided to use a very simple time
synchronization protocol, instead of using more accurate time
synchronization available [31]. GTS nodes get the GPS time
every 30 minutes (to save energy) using the National Marine
Electronics Association (NMEA) ZDA sentence which returns
the current UTC date and time and synchronize their clocks.
Then, the GTS nodes send broadcast timesync packets to
all SIM nodes within range with a timestamp of its newly
synchronized clock and all SIM nodes synchronize to it. This
very simple yet effective method allows us to keep all nodes
in the system time synchronized while minimizing complexity
and nodes’ energy usage.

2) Data Collection: In our SIPS application, one important
system parameter we must consider is the sampling rate. There
is a clear tradeoff between the sampling rate frequency and the
energy consumption. In our case, we considered the dynamics
of the phenomena interacting with solar irradiance (i.e. cloud
movement and speed), together with the physical separation

Fig. 8: Software Architecture Overview

distance between the different SIMs in the same deployment
area (see Section III-C). In our deployment, SIMs collect a
solar irradiance sample every 5 seconds. A high sampling rate
is necessary since the irradiance values change quite fast due
to cloud movement. High sampling rates enable the sensors
to detect a cloud front earlier and more accurately. This is
important to achieve high prediction accuracy. However, sam-
pling too fast also increases energy consumption and reduces
system lifetime. We tried different sampling rate values but
we found that 5 seconds was a reasonable tradeoff between
detection accuracy and system lifetime and it worked the best
for our application and local conditions.

To perform short term prediction a live data stream of sen-
sor values is necessary. After recording an irradiance sample
a SIM sends a data packet containing the sensor value and the
current timestamp to the GTS where the data is forwarded to
our server via the building’s WiFi (when available) or using a
4G WiFi hotspot, and processed to perform prediction. Data
collection is only done during times where the solar irradiance
is above a specified threshold. This leads to a collection of
approximately 8000 irradiance samples per day and sensor.

To train and evaluate our prediction models, it is also
necessary to have access to the ground truth, which is the
actual energy output of the solar power plant. We put forth
substantial engineering efforts to guarantee reliable continuous
sampling to obtain an uninterrupted stream of solar plant
ground truth data, which proved to be a non-trivial task. All
of our equipment was designed to be resistant to various
weather conditions. Although the solar array is not in a remote
location, the only access to the communication module of the
solar array is completely exposed to weather and animals,
most commonly cows and sheep (grazing contract) and mice,
rabbits, hares and raccoons. We used a rain resistant steel case
for the sampling computer, and securely fixed the case to an
existing structure above the ground to avoid animals and crawl-
ing insects. Another issue is the electromagnetic interference
generated by the solar array itself. At certain times of the
day, the 500 kW solar power inverters generate interference
strong enough to completely block the serial communication
used in the sampling computer, which lead to significant data
loss. We tried many ways to shield the computer, including
sealing the computer in multiple metal boxes of different
sizes one inside another one, minimize hole size for running
power and serial cables, drilling the smallest holes possible
on opposite sides of alternating boxes, filling the space with
steel wool, and grounding heavily each box. After many failed
shielding attempts, we replaced the serial communication with
wireless to solve the problem (we discovered some COTS USB
chips are not designed to work in environments with heavy
electromagnetic interference). Our system gathers the real time
energy output by directly accessing the web interface of the
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Fig. 9: Illustration showing a cloud front hitting the sensor deployment before covering the solar power plant.

Fig. 10: Sensor detecting a cloud 75 seconds earlier than the plant.

internal communication system of the solar array. All the data
streams from SIPS are stored in a central database.

3) Data Processing: After the data is collected on our
server the values from all SIMs and the solar plant output
values are synchronized into time slots of 5 seconds and stored
in a data matrix. In order to sanitize the data, if a sensor
value of a specific time slot is missing or has a difference
larger than a std. dev. from the average, the average of the
closest sensors is used to fill this gap. Similarly, if a solar
plant data is missing, we use the average of adjacent temporal
sample values. The redundancy in our system, explained in
Section III-D, helps us addressing the problem of failing
sensors and missing data. Since we are using GPS for time
synchronization to establish a common timeline, all nodes’
readings are sufficiently synchronized. The generated data
matrix can now be used by our prediction models to forecast
the upcoming solar array output.

We want to predict the energy output of the solar field
introduced in Section III-C for different time horizons based
on past values of our sensor deployment and past values of
the solar plant output power. The data collection and data
processing procedure creates multiple parallel time series of
the sensor values xi(t), xi(t − 1), xi(t − 2), xi(t − 3), ...
and a time series of the solar field energy output values
y(t), y(t− 1), y(t− 2), y(t− 3), ....

Fig. 11: Sensor detecting a cloud 65 seconds earlier than the plant.

IV. PREDICTION MODELS

A. Exploratory Analysis

As explained in Section III-D our sensor deployment covers
45 degree slice of geographical area north-west of the solar
field and functions as an early warning system for approach-
ing clouds. The location of the sensor deployment makes it
possible to sense an approaching cloud front before it hits the
solar panels of the power plant and causes a change in the
output power as shown in Figure 9. Our sensors are able to
measure a decrease or increase of the solar irradiance earlier
then it is reflected in the output power of the solar field. Our
sensors record a cloud phenomenon between 30 to 120 seconds
earlier than the solar field. We are able to determine if clouds
are approaching our sensors from the north-west based on the
wind speed and direction provided in the NOAA database for
the location of our solar field.

Figure 10 and 11 show the behavior between the average
sensor output and the actual output power of the solar field. In
Figure 10 the solar plant output power is dropping from about
900kW to 770kW within a few minutes. The average sensor
values accurately capture these dynamics ahead of time. The
solar field output reaches the lowest point of about 770kW at
10:55:45, the sensor in comparison observes the lowest value at
10:54:20 and therefore 75 seconds earlier then the solar plant.
Figure 11 shows a similar situation, where the sensor motes
observes a specific pattern in the cloud movement 65 seconds
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Fig. 12: Cloud map of all 19 sensors over a full day.

earlier compared to the energy output of the solar plant. The
time span between recording an approaching cloud at the SIM
location and observing a decrease or increase in the output
power of the solar field can be increased by moving the SIM
sensors to different locations with a greater distance from the
solar field. There is a tradeoff between the time span to increase
the potential prediction horizon and the correlation accuracy
between sensor values and output power. Clouds change in
size and composition while they are moving. This means the
further away a sensor is placed from the actual solar array, the
lower the correlation between sensor values and solar output
power. Figure 12 shows a map of all 19 sensors displaying the
different irradiance levels over a full day. In the cloud map,
a value of 1 (blue) represents a clear sky and a value of 4
(red) represents a very dense cloud causing a huge drop in the
solar power output. The map shows the clouds’ dynamics and
how a cloud front affects the sensors at different times. As
shown in Figure 12, our sensors experience huge differences
in cloudiness during one day and we are still able to calculate
an accurate prediction as presented in Section V.

Our first attempt to create a prediction model was a
mechanistic approach to calculate the speed and angle of
an approaching cloud front. Dynamic cloud models like this
have been proven elusive as stated in [27], [28]. It cannot be
assumed that an approaching cloud front has the shape of a
straight line, this makes it almost impossible to calculate the
angle of an approaching cloud front with a sensor network
deployment as ours. Since clouds are not uniform and their
density is constantly changing, it is also very difficult to cal-
culate the speed of clouds based on the readings of two sensors
at different locations. Due to these conditions, our approach
to calculate cloud speed and cloud angle from our sensor data
did not work well. An approach to determine the cloud speed
and angle by deploying a wind speed and directions sensor
did not show very good results since the wind speed and
direction at the ground level do not necessarily correlate to
the speed and direction of clouds at a higher elevations. These
conditions require a prediction model that is able to calculate
an energy output prediction only based on SIM sensor readings
and does not require additional information such as cloud
speed or angle. To address these conditions, we implemented
three different prediction models. A Neural Network without

external sensor input, a Neural Network with external sensor
input and a novel algorithm called Peak Matching Algorithm
(PMA). We introduce these prediction models in the following
sections.

B. Nonlinear Autoregressive Neural Network without External
Input (NAR)

A Nonlinear Autoregressive Neural Network with no external
input (NAR) predicts the solar field output only based on a
time series of the solar plant energy trace. This model does
not use any sensor data. It represents the current state of the
art to perform solar plant output prediction. The NAR model
predicts a series of future values for a time horizon of Δt
based on n past values of the solar plant output power y(t) as
follows:

ŷ(t+Δt) = f(y(t), y(t− 1), ..., y(t− n)) (1)

where y(t) stands for the output of the solar field in kW
(kilo Watt) at time t, ŷ(t + Δt) stands for the predicted
value at time t + Δt. The architecture of a 3-layer (input-
hidden-output) neural network with 15 hidden neurons and an
input and feedback delay of 2 showed the best results in our
evaluations. To create this model we used the Matlab Neural
Network toolbox for time series prediction.

C. Nonlinear Autoregressive Neural Network with External
Input (NARX)

The NARX prediction model extends the NAR model by
including external sensor values. We try two different external
inputs, one based on the GHI data collected with a single point
Epply PSP radiometer (NARX GHI), and another based on
data from our SIM sensors (NARX SIPS). Using the latter as
an example, the NARX model predicts a series of future values
for a time horizon of Δt based on the previous n values of
the solar plant output power y(t) and the previous n values of
the SIPS network x(t) as follows:

ŷ(t+Δt) =f(y(t), y(t− 1), ..., y(t− n),

x(t), x(t− 1), ..., x(t− n)) (2)

where y(t) stands for the output of the solar field in kW (kilo
Watt) at time t, x(t) stands for the value of our SIM sensors at
time t and ŷ(t+Δt) represents the predicted energy value at
time t+Δt. As for the NAR model, we are also using a 3-layer
(input-hidden-output) architecture with 15 hidden neurons and
an input and feedback delay of 2. To perform a prediction with
the NAR and the NARX model, training on multiple days of
data is required. The selection of the training data is critical,
especially since the solar irradiance varies depending on the
time of year. For example, a training set collected in February
is not applicable to perform prediction of the power output in
August.

D. PMA: Peak Matching Algorithm

The Peak Matching Algorithm (PMA) calculates a prediction
by dynamically comparing the stream of sensor data to the
stream of solar plant output data. For the PMA prediction
method no training of any kind is required. This gives the
PMA a big advantage over Neural Network based prediction
models, since the selection of a good training set is a very time
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consuming and difficult task in the case of solar irradiance data.
The PMA is based on calculating the current time difference
between a sensor recording a cloud phenomenon and the solar
plant output reflecting this cloud phenomenon. This is done by
matching local maxima between the sensor data stream and the
solar plant output power stream. Algorithm 1 shows the PMA.
To calculate a prediction with the PMA, a continuous stream
of sensor data and solar plant power output data is required.
In these data streams, which are represented as vectors �S
and �G, the algorithm determines local peaks within a moving
window Wl as shown in the first while loop in algorithm 1.
After all largest local peaks in sensor vector �S and solar plant
power vector �G are found, the algorithm compares each peak
in �SensorPeaks to each peak in �PowerPeaks, which is
done in the nested for loops shown in algorithm 1. If the
timestamp of SensorPeak, is smaller than the time stamp of
PowerPeak and the difference in time between PowerPeak
and SensorPeak is less than Pd, the algorithm matches
these peaks. If two matching peaks are found, the current
prediction horizon is calculated as well as a factor representing
the ratio between the solar plant power output value and the
sensor value at the peak. This procedure is repeated within the
nested for loops until the best matching peaks within the local
peak window Wl are found. Now the predicted solar plant
output power value at time t + horizon can be calculated
by multiplying the current sensor value at time t with the
factor value. After a prediction value is calculated for all 19
sensors, the RSME within the window t-4 to t (window size
5) is calculated for every sensor. The predicted value of the
sensor with the lowest error rate is selected as the predicted
value for the current time step. This procedure is done for
every prediction time step. The window size should be small
so that the algorithm is able to react fast and switch to sensors
that provide improved prediction quality. The PMA is able
to calculate a prediction for a time step based on number of
peaks n detected in each local peak window size Wl with a
complexity of O(n2). For the evaluation results presented in
Section V we are using a local peak window size Wl of 15
data points and a peak matching distance Pd of 15 data points
which correlates to 75 seconds in real time. This prediction
method dynamically updates the prediction horizon, depending
on the current speed and direction of the cloud movement. To
make this method comparable to a neural network with a fixed
prediction horizon, we calculate the average prediction horizon
of the PMA over a full day and compare the results to a neural
network prediction of the same day with the same horizon.

V. EVALUATION

We collected readings from our 19-node deployment over a
time period of 6 weeks in March/April 2013. Within this
time, we only focus on prediction of days with very cloudy
conditions. Solar irradiance prediction on clear days has been
extensively evaluated [22], [23], [21].

A. Prediction model evaluation metrics

To evaluate the forecasting quality of our prediction models,
we calculate the Root Mean Squared Error of our prediction
results compared to the actual solar plant power output. We
calculate the RMSE as follows:

Algorithm 1 PeakMatching(�S, �G, n, Wl, t, Pd)

�S: vector of the n most recent sensor values
�G: vector of the n most recent solar plant power values
Wl: local peak window size
t: current time stamp
Pd: peak matching distance
n: number of data points in �S and �G

{Comment: Determine largest peaks in �S and �G in the window
i−Wl to i and store them}
i = 0
while i ≤ n do

Add largest peak in �S(i−Wl : i) to �SensorPeaks
Add largest peak in �G(i−Wl : i) to �PowerPeaks
i = i+ 1

end while

for all SensorPeak in �SensorPeaks do
for all PowerPeak in �PowerPeaks do
{Comment: If SensorPeak is earlier than the PowerPeak and
the difference is less than Pd, peaks are matched}
if SensorPeakTime<PowerPeakTime AND (SensorPeakTime
- PowerPeakTime) <Pd then

horizon = PowerPeakTime - SensorPeakTime
factor = PowerPeakValue / SensorPeakValue

end if
end for

end for
{Comment: The predicted value at time t+horizon is the sensor
value at time t times the factor}
prediction(t+ horizon) = �S(t) ∗ factor
return prediction

RMSE =

√√√√
n∑

t=1

(s(t)− p(t))2

n
(3)

where s(t) is the solar output power and p(t) is the predicted
solar output power at time t. In our evaluation, we use the
normalized RMSE, i.e. NRMSE = RMSE/(smax − smin),
with smax = 1000kW and smin = 0kW and the value
expressed as a percentage of the output power.

We also evaluate our prediction results with a metric intro-
duced in [28]. By applying the proposed metric we compare
our model to a clear sky persistence model, which predicts the
next time step y(t+1) by comparing the measured irradiance
to the clear sky irradiance. Our clear sky persistence model
is based on the data of a clear day without any clouds. The
second plot in Figure 1 shows the output power trace of the
solar field on a clear day. The prediction of the output power
for the next time step P (t + 1) in the persistence model is
calculated by multiplying the power output of the clear sky
model Pclr(t+1) with the ratio of the power output P (t) and
the clear sky power output Pclr(t) as follows:

P (t+ 1) = Pclr(t+ 1)
P (t)

Pclr(t)
(4)

This simple persistence model relies on Pclr(t), the power
output on a clear day at time t, which is time and location
dependent. Since we are using data collected at the location of
the introduced solar field to calibrate the clear sky persistence
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(a) NRMSE (b) s value

Fig. 13: Normalize Root Mean Square Error (NRMSE) and s values of the different prediction models. The numbers on top of the bars in
Figure 13(a) indicate the time horizon used.

model, it will only work at our current location and may be
error prone for different geographical locations. As stated in
[28] we calculate the model quality metric s as follows:

s = 1−
RMSEM

RMSEP

(5)

where RMSEM is the Root Mean Squared Error of our
prediction model and RMSEP is the Root Mean Squared
Error of the clear sky persistence model. The calculated value
s tells us the advantage of a forcasting model compared to
the clear sky persistence model. A value of s = 1 means
the prediction is perfect, a value of s = 0 means the data
variability dominates the forecast. A persistence model has
a forecast quality of s = 0 by definition. A value of s < 0
means that the forecasting model performs worse then a simple
persistence model.

B. Evaluation Results

In this section, we compare the prediction results of our NAR,
NARX GHI, NARX SIPS and PMA prediction models on
days with variable cloud coverage, since those are the most
critical days for solar output power dynamics. To compare
the forecasting results we calculate the Normalized RMSE
(NRMSE) as well as the s value. We test our prediction models
on 6 different days with cloudy conditions. To train the Neural
Network based models we use data sets of 3-5 days with
similar conditions as the training days. The prediction horizon
of our testing days is determined by the average prediction
horizon of the PMA. For example, if the PMA has an average
prediction horizon of 40 seconds over one full day, we also
perform a prediction of 40 seconds with the NAR and NARX
models on the same day.

Figure 13(a) shows the NRMSE of the different prediction
models over 6 different days with cloudy conditions. The
average prediction horizon for each day is printed on top of the
error bars. Our PMA model has an average accuracy of 97.24%
on all testing days and shows significantly better performance
than the NAR and both NARX models. The average PMA
NRMSE reduction with respect to the NARX GHI, the state-of-
the-art model that uses a single point Eppley PSP radiometer,
is of 240% (i.e. 3.4 times less), with a maximum reduction of

426% (i.e. 5.26 times less). PMA performance improvement
with respect to NAR is even greater, with an NRMSE reduction
of almost 300% (maximum of 484%). The NARX SIPS and
NARX GHI model only show small improvements compared
to the NAR model, which predicts the output power only
based on past output power values. Both NARX models show
an average reduction of NRMSE of ∼15% with respect to
NAR, indicating that ANNs model had trouble finding the
prediction patterns. We also evaluate the prediction ability of
our models based on the s value introduced in section V-A.
The s value represents the quality of the prediction model
compared to a clear sky persistence model on a scale between
0 and 1, where 1 means perfect prediction and 0 means no
improvement compared to a persistence model. Figure 13(b)
shows a comparison of the s values for our prediction models
calculated for all test days. The PMA model again performs
the best compared to the ANN models by showing a very
high s value for all testing data sets. The PMA average s
value on all test cases is 0.93, with an average improvement
of 26% over NARX SISP, 26% over NARX GHI and 33% over
NRA. Similarly to the results from the NRMSE, the NARX
models with either sensor input perform similarly on average,
with an average s value of 0.74 and an average improvement
over NAR of near 6%. Figure 14 shows a comparison of
the instantaneous error rates between the different prediction
models over a sample evaluation day (Day 1). The Y axis
shows the under- and over-estimation of the prediction models
over time. The PMA shows the lowest error values compared
to the other prediction models. On rare occasions, the PMA
prediction accuracy is lower than the other models (e.g. at
around 13:30 in Figure 14). Sudden changes in wind direction
can cause errors like this since the PMA accuracy depends
mainly on the current stream of sensor data.

VI. DISCUSSION

The results of the PMA model are significantly better com-
pared to the ANN based models. We believe that ANN models
may require significantly more fine tuning of some of non-
trainable parameters, such as the number of layers, number
of hidden units per layer, etc, to perhaps obtain better results.
Another advantage of the PMA model is that no training of
any kind is required. This makes the potential application of

234



10:00 12:00 14:00 16:00
−50

−30

−10

10

30

50
NAR Error on Day 1

Pr
ed

ic
tio

n 
Er

ro
r i

n 
%

Time

10:00 12:00 14:00 16:00
−50

−30

−10

10

30

50
GHI Error on Day 1

Pr
ed

ic
tio

n 
Er

ro
r i

n 
%

Time

10:00 12:00 14:00 16:00
−50

−30

−10

10

30

50
SIPS Error on Day 1

Pr
ed

ic
tio

n 
Er

ro
r i

n 
%

Time

10:00 12:00 14:00 16:00
−50

−30

−10

10

30

50
PMA Error on Day 1

Pr
ed

ic
tio

n 
Er

ro
r i

n 
%

Time

Fig. 14: Instantaneous prediction error over a sample day (10am to 5pm) for the different prediction models. Values around zero are best.

Fig. 15: Comparison between largest prediction horizon and lowest RMSE for the PMA algorithm

the PMA model easier to use in other environments, since
ANN models require the creation of a good training data set,
which is a very time intensive process. The only weakness
of the PMA model is that the prediction horizon depends on
the data set and can not be specified by the user. However,
users can change the time horizons based on their needs by
deploying closer or farther away from the target solar field.
Every SIM sensor cluster is deployed in a different location
with different distances to the solar power plant, as shown in
Figure 3. Therefore, every sensor shows a different prediction
time horizon. Our PMA is able to optimize a prediction value
for either lowest RMSE or largest prediction horizon. This is
done by running the prediction algorithm in parallel on all
19 sensors and dynamically selecting the sensor that either
has the largest prediction horizon or the lowest RMSE, which
is calculated based on the comparison of the most recent

solar plant output and prediction values within a specified
window. Figure 15 show the results for our testing days when
optimizing for lowest RMSE or largest prediction horizon.

VII. CONCLUSION

In this paper, we showed an alternative way to approach the
problem of short term solar forecasting using a distributed
wireless sensor network. Typically, single sky imagers and
pyranometers are used for forecasting. However, these devices
are limited because of problems such as glaring (for sky
imagers) and single measurement point (for pyranometers). In
addition, sky imagers and pyranometers are costly devices (>
$2000), making it prohibitive to install in large numbers. We
demonstrated that cheap (< $1) commercial-of-the-shelf light
sensors can be adapted to measure the solar irradiance in real
environments, and used these data to improve prediction accu-
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racy. We evaluated the spatial-temporal correlations between
of the power output of a 1 MW solar plant and the recorded
sensor values measured by our SIPS infrastructure. For solar
irradiance prediction, we introduced NAR and NARX Neural
Network models, as well as a novel Peak Matching Algorithm
(PMA) prediction model. PMA achieves average prediction
accuracy 97.24% while reducing the average NRMSE by 240%
when compared with state-of-the-art methods for different
short-term time horizons. Our paper shows that wireless sensor
networks offer enormous potential as a low cost but high
accuracy approach for short-term solar forecasting.
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