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ABSTRACT

Buildings account for 40% of US primary energy consump-
tion and 72% of electricity. Of this total, 50% of the energy
consumed in buildings is used for Heating Ventilation and
Air-Conditioning (HVAC) systems. Current HVAC systems
only condition based on static schedules; rooms are condi-
tioned regardless of occupancy. By conditioning rooms only
when necessary, greater efficiency can be achieved. This
paper describes POEM, a complete closed-loop system for
optimally controlling HVAC systems in buildings based on
actual occupancy levels. POEM is comprised of multiple
parts. A wireless network of cameras called OPTNet is de-
veloped that functions as an optical turnstile to measure
area/zone occupancies. Another wireless sensor network of
passive infrared (PIR) sensors called BONet functions along-
side OPTNet. This sensed occupancy data from both sys-
tems are then fused with an occupancy prediction model us-
ing a particle filter in order to determine the most accurate
current occupancy in each zone in the building. Finally, the
information from occupancy prediction models and current
occupancy is combined in order to find the optimal condi-
tioning strategy required to reach target temperatures and
minimize ventilation requirements. Based on live tests of the
system, we estimate ≈ 30.0% energy saving can be achieved
while still maintaining thermal comfort.

Categories and Subject Descriptors

J.7 [Computers In Other Systems]: Command & con-
trol; C.3 [Special-Purpose and Application-Based Ap-
plication Systems]: Real-time and embedded systems

Keywords

Occupancy, HVAC, Ventilation, Energy savings

1. INTRODUCTION
Sustainable buildings represent a major paradigm shift from
current practice. According to the US Department of En-
ergy, buildings account for nearly 40% of US primary energy
consumption in 2010, 72% of which is electrical energy [1].
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Of this total, 50% of the energy consumed in buildings is
used for heating, air-conditioning and ventilation (HVAC)
systems [1]. Reducing this load is a priority if we wish to
achieve energy independence. Within office buildings, one
obvious source of inefficiency are the empty or partially filled
rooms. Rather than assuming all rooms are used equally,
rooms should be conditioned based on actual usage.

Several works have shown that approximately 25%-40%
HVAC energy saving can be achieved by regulating HVAC
systems based on occupancy [15, 11]. These papers discuss
sensing solutions for detecting room usage. Passive infrared
(PIR) sensors are commonly used for binary sensing of oc-
cupancy for lighting. These sensors, however, do not enable
the adjustment of ventilation, which depends on the number
of occupants. CO2 sensors are another alternative. They
can infer level of occupancy and ventilation rates but are
slow to respond and suffer from calibration problems [16].
For our system, we utilize cameras deployed in public hall-
ways along with PIR sensors within rooms to infer occu-
pancy. Instead of deploying cameras directly in rooms to
count individuals, we deploy cameras that count the num-
ber of people that pass across an area. By using cameras as
optical turnstiles, it is possible to measure occupancy levels
of areas connected to the turnstile area. Privacy issues are
avoided by only deploying in public hallways where security
cameras are already present. Moreover, by performing local
video processing on the cameras, we avoid the transmission
of raw video data to a central location. For our experi-
ments we follow well-known best practices with respect to
the use of privacy-critical data [5, 2]. Furthermore, our dis-
tributed data processing solution enhances scalability and
significantly reduces network load, improving system life-
time of the bandwidth-limited camera sensor network. Ex-
isting optical counting systems exist, but they are difficult to
retrofit to buildings and require hard wiring [8]. Wiring can
be very difficult for many older buildings where drop ceil-
ings are not available. We wish to utilize motes that can be
easily deployed in even older buildings. Maintenance time
can be minimized by coordinating battery replacement with
routine light-bulb replacement.

Unlike lighting, the thermal ramp up or down of a room
involves delay. While an optical system of occupancy moni-
toring can give occupancy in near real-time, reactively con-
ditioning a room will likely leave occupants uncomfortable
until target temperatures are met. In order to ensure occu-
pant’s comfort, we must be able to predict when occupants
are likely to enter a room and begin conditioning before-

203



hand. We achieve this by using a blended Markov Chain as
described in [15].
This paper contributes the following:
• We developed OPTNet, an occupancy estimation sys-

tem comprised of 22 node wireless camera nodes, and BONet,
a 40 node PIR wireless sensor network. We show how light-
weight on-board image processing algorithms along with clas-
sification techniques can be used in order to accurately de-
tect occupants’ transitions.
• We show how errors in occupancy sensing can be cor-

rected by fusing data from an occupancy transition model
together with sensor data using a particle filter.
• Our most significant contribution is the design, im-

plementation, deployment and evaluation of the POEM sys-
tem, which is a full closed-loop system that conditions rooms
based on occupancy on a real office building. To our knowl-
edge, our system is the first to control both temperature and
ventilation based on near real-time occupancy.
• We tested our system over a period of four weeks and

show that significant energy savings (26%) are possible while
still maintaining conditioning effectiveness. Using a cal-
ibrated EnergyPlus simulation, we show that this system
saves 30% energy annually over standard strategies.
• We perform Return On Investment (ROI) analysis,

showing the sensitivity of different factors and concluding
that the cost of the system could be amortized in approxi-
mately 6 to 10 months.
After examining related work in Section 2, we begin in Sec-

tion 3 with an overview of POEM, a demand-driven system
for optimally controlling HVAC systems. In the following
sections, we describe the different components of POEM.
Section 4 describes OPTNet, a 22 wireless camera deploy-
ment, which is followed by Section 5 that describes a 40 PIR
wireless sensors. We then show in Section 6 how a particle
filter can be used to correct errors in occupancy. Section 7
shows the programmatic interface with the building man-
agement system (BMS) and the control algorithm used to
optimally condition rooms based on current and prediction
occupancy. In Section 8, we evaluate the potential energy
savings and the conditioning effectiveness with respect to
temperature and ventilation. We then show in Section 9 that
the cost of the system can be amortized in approximately
6-10 months if applied to the entire building and finally we
discuss our conclusions and future work in Section 11.

2. RELATEDWORK
As previously mentioned, our most significant contribu-

tion is the development of a full closed-loop occupancy based
control system in a non-residential building. Since there are
few such deployments, we examine work related to each of
our subsystems.
In [17], the authors developed a 16 sensor node camera

deployment within the hallways of an office building. While
the system was shown to be accurate at counting individual
components, independent tests over 24 hours showed that
the system is only able to capture ≈ 80% [15] of transitions.
In particular, they do not address how errors in transitions
lead to cumulative errors in occupancy. Our paper examines
this problem in detail and how it can be addressed using a
particle filter.
In [22], the authors monitor elderly people using Imote2

motes with Enalab cameras. To track occupants, they utilize
a motion histogram. The system assumes that the camera
can actively monitor the entire area of interest. The problem

of privacy also exists for this system; cameras must be placed
directly in the room.

The authors of [11] developed and tested an occupancy-
based conditioning system. For their deployment they utilize
PIR and door sensors to determine if rooms are occupied and
condition rooms reactively. Ventilation is not considered
as part of the conditioning strategy, which impacts energy
efficiency. One of the main issues of their system evaluation
is the conditioning effectiveness; they do not consider the
comfort of their occupants during the ramp-up period for
their reactive system. Our evaluation examines in detail the
thermal comfort of occupants and also considers ventilation.

Door/PIR sensors are also used in [21] for conditioning
residential buildings. They utilize a Hidden Markov Model
in order to determine the probability that the house is occu-
pied, occupied with occupants asleep, or unoccupied. Ven-
tilation is not taken into account.

In [15], the authors develop an occupancy prediction model
using a blended Markov Chain. In addition, they developed
a conditioning strategy utilizing the occupancy prediction
model, in simulation, to estimate energy savings. While
these simulations provided analysis of ventilation, the pa-
per does not implement the model in an actual deployment.
The authors also describe agent based, multivariate Gauss-
ian, and moving window Markov Chain occupancy models
in [14, 13]. The main drawback of these works is that the
performance of the proposed systems is done only in simula-
tion. In particular, it is questionable whether the unbiased
error introduced into the simulated sensor data is valid; in
our deployments we found that errors in particular sensor
locations can be bias. We show how to correct errors and
verify energy saving with an actual deployment.

The authors of [25] developed a prediction based con-
ditioning strategy for residential buildings using k-nearest-
neighbors (KNN) to predict occupancy and a deployment
utilizing PIR and RFID. This prediction method was 80%
to 86% accurate for a 90 minute prediction, but did not not
perform well for rooms that were not consistently occupied.
While the approach is appropriate for residential buildings
where the usage dynamic is simple, this approach may not
work as effectively for office spaces where inter-room corre-
lations exist. They also only consider temperature for their
control, and do not consider ventilation.

3. POEM OVERVIEW
The main contribution of this work is POEM, which is

a complete system that controls the temperature and ven-
tilation of a building. This system is comprised of several
components. Figure 1 summarizes the system architecture
and shows all components of the POEM system. OPTNet,
a wireless camera sensor network, and BONet, a PIR sensor
network, provide occupancy estimates. A particle filter then
fuses the sensing data from OPTNet and BONet with the
output of an occupancy transition model in order to better
estimate the current occupancy in each room. The current
occupancy estimation from the particle filter, the ramp-up
time, and the predicted occupancy from the transition model
1 hour into the future are combined in a control schedule
to optimally pre-condition the spaces to reach the target
temperature. Thus, we can optimally schedule the HVAC
system to match the likely arrival of occupants. Once the
process is complete, the conditioning affects occupants com-
pleting the feedback loop. The next sections provide a detail
description and evaluation of each POEM component.
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Figure 1: Architecture of the POEM system.

4. OPTNET
OPtical Turnstile Network (OPTNet) is a new low power
wireless camera system that is able to accurately monitor
room occupancy in near real-time. We start with a descrip-
tion of the hardware and deployment in Section 4.1. In Sec-
tion 4.3, we describe a lightweight image processing method
that can be used with a classification algorithm to detect
transitions.

4.1 Overview and Design Challenges
We use the Imote2 platform developed by Intel and the
IMB400 Camera [4] developed by Xbow. The mote uses
an XScale processor currently set to run at 208 MHz. The
mote has 64MB of memory and a CC2420 radio chip. The
camera can capture 32 fps at 640x320 resolution. By uti-
lizing a fish-eye lens fashioned from a door peephole (see
Figure 2, right), we are able to roughly view 9 m2 when the
cameras are deployed at a height of 3 m. Therefore the cam-
era has a viewing angle of about 160 degrees. We have 22
camera nodes deployed on two floors capable of measuring
the occupancy of 60 areas. In our test deployment the nodes
have a wired energy supply, which makes it easier for us to
run different experiments. We also have the option to power
a node with an 11 Ah battery pack which provides enough
energy to run a node for about 45 days.
The goal of the system is accurate detection of occupants

moving between areas. In order for the control system to be
useful, accurate occupancy detection, particularly for empty
rooms, is critical. Empty rooms provide an opportunity to
let room temperatures float and thus save energy. Also im-
portant is the ventilation of the room, which is proportional
to occupancy.
There are several design challenges. Motes have limited

resources available. Though the IMB400 cameras are able
to capture 32 fps, the Imote2 radio is only able to transmit
≈ 100 kbps under typical conditions, making near real-time

Figure 2: Transition areas (bigger blue boxes) and
trigger areas (small red boxes).

image streaming infeasible. This bandwidth issue can be
partially solved if we only send images of interest and buffer
the images until they can be sent. However, this requires
heavy use of the radio, which is one of the most energy con-
suming components. Instead, it is more efficient to extract
only useful features from the images and transmit a small
amount of information. Thus, our design challenge is to de-
sign an efficient on-board image processing algorithm that
can compress data to be processed at the base-station.

Occupancy tracking is still an open problem in the com-
puter vision community. Many tracking algorithms focus
on the person, typically correlating the identity of a per-
son between frames using feature-based algorithms such as
SIFT [20] and SURF [12]. While it is possible to run these
algorithms on the Imote2, they are computationally expen-
sive. Also, placing cameras directly into rooms raises serious
privacy concerns. OPTnet thus only uses cameras installed
along hallways. In our application, we only care about oc-
cupant transitions between areas, not the identity or precise
location of specific occupants. Instead, we view this problem
as a motion recognition problem, where we are attempting
to recognize a sequence of images as a transition.

4.2 Camera Placement
HVAC systems are designed to condition zones within the

building, where each zone is comprised of one or more rooms
and is controlled to a specific temperature/ventilation. Fig-
ure 1 shows the zones for our deployment. As previously
mentioned, we are attempting to capture the transitions that
occur between zones in order to track the occupancy of an
HVAC zone; the cameras operate as optical turnstiles. In
order to capture all transitions, cameras must be deployed
in such a way that all the entrances and exits are covered
for a zone. Thus, the distribution and number of cameras
depends on the entry/exit points of an area. More specifi-
cally, there must be one camera per entrance for a zone. For
example, to track all the transitions for Offices area 1 (see
Figure 1), a camera is placed in front of the Conference area
and another in front of the Robotics lab. Since zones share
entry/exit points, a camera can serve multiple areas; the
camera deployed in front of the Conference area is used to
track transitions from the Computer Lab, Conference area,
and Office area 1.

4.3 Transition Detection
In this section, we describe a fast lightweight image process-
ing algorithm that can be used for transition detection. Our
strategy is to classify a sequence of images as a specific type
of transition. We accomplish this by first detecting motion
within a target transition area using background subtrac-
tion. We then determine the start and end of a transition
from a continuous sequence of images containing motion.
This sequence is then transformed into a vector that can
be sent back to the base-station to be compared against
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Figure 3: Above is a summary of transition classification procedure.
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Figure 4: Ground Truth compared with KNN model for two different transition areas.
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Figure 5: The sequence of the trigger state helps indicate direction. The red box indicates the trigger state
is active.
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known labeled data using the k-Nearest Neighbors (KNN)
algorithm.

4.3.1 Motion Detection
For human motion detection we use previous frame back-
ground subtraction with a static threshold [?]. We tried
several other background subtraction methods (e.g. moving
average, weighted moving average), but we found previous
frame subtraction to work the best for our application. In
particular, it is robust against rapid lighting changes caused
by opened doors as it can quickly reduce the number of pix-
els erroneously classified as active. This reduces the number
of perceived transition sequences caused by people loiter-
ing near or within transition areas. It also quickly removes
objects from images such as boxes and chairs, which occur
frequently in the public hallways that our deployment is lo-
cated.

4.3.2 Delimiting a Transition Sequence
The first problem we address is identifying a sequence of
images that could potentially contain a transition. We start
by defining a transition area, which is a small 1x2 m2 area
on the ground typically in front of a door or within a hall-
way. Figure 2 (left) shows an example of a transition area.
In addition to a transition area, we also include a trigger
area (smaller inner red boxes in Figure 2) that is placed on
one side of the transition area. The trigger area helps to
distinguish when someone actually crosses the area and the
direction of travel (Figure 5). Figure 3 shows a transition
example. If a transition area has been empty for 3 previous
frames (≈ 0.6 seconds), when a person walks into the transi-
tion area, this signals the beginning of a transition sequence.
Detection is achieved using previous frame background sub-
traction using a static threshold. A sequence is ended if
there is no activity close to the trigger area (60 cm) for 3
consecutive frames. Transitions are assumed to take a mini-
mum of 0.25 seconds. With the non-active frames buffering
the front or back of the image sequence, about 0.25 seconds
in duration, we assume any sequence shorter than 5 frames
(≈ 1.0 seconds) is not a valid transition.
We found this method of delimiting sequences works well.

The previous frame background subtraction, in particular, is
useful for discarding spurious transition sequences. People
loitering within the transition areas are usually relatively
stationary. Movement will activate the sequence, but since
they are not moving significantly, they quickly disappear as
part of the background causing the sequence to end quickly.
A loiterer typically generates multiple sequences less than
the minimum 5 frames. Sudden flashes of light are adapted
to quickly and the perceived sequences are typically shorter
than the minimum 5 frame sequence.

4.3.3 Sequence Feature Vectors
Next, we define how to construct a feature vector from an
image sequence, which will then be used with a KNN classi-
fier to determine the best classification. Let [f0 . . . fn] denote
a set of transition sequence frames, each fi encoded as a bi-
nary matrix of size w× h where w and h are the width and
height respectively. Thus, f0 . . . fn denotes the complete im-
age transition sequence. Let cji denote the ith column vector
of fj . We define the one dimensional image feature vector v
where vi =

∑
ci. By summing the columns we are removing

the y axis locality of the person moving through the frame.
A person transitioning at the top, middle, or bottom of a
hallway will thus generate a similar image feature vector.

The number of people transitioning is also still retained. If
two people walk side by side, the magnitude of the column
vector will be roughly doubled.

In addition to creating a feature vector of the image se-
quence, we also create a feature vector of the trigger state.
For each frame of the image sequence, we determine if the
trigger area is active or not. The state of the trigger area is
defined to be active when a certain threshold of pixels (5%
for our deployment) differs from the corresponding back-
ground. For each frame of the transition sequence we deter-
mine the state of this trigger. A vector of the trigger states
is incorporated into the KNN classification to determine the
direction of the transition. Figure 5 shows how the sequence
of the trigger state can be used to infer direction. A left to
right sequence will have non-active trigger states at the be-
ginning and end. A right to left sequence will have active
trigger states only at the beginning.

While it would be possible to use the entire transition area
as the feature vector, more data would be sent. If we assume
a 10 image sequence, then each binary 20×40 transition area
needs to be sent along with 10 bits for the trigger sequence.
This would be (20 · 40) · 10 + 10 = 8, 010 bits. If we were
to send the feature vectors, we would only require (20 · 6) ·
10+10 = 1, 210 bits or ≈ 152 bytes for an entire sequence (6
bits per column, 10 bits for the trigger sequence). This can
be roughly put in 2 packets using the node RF transceiver
mentioned in Section 4.1. Further compression could be
achieved by aggregating groups of columns. This along with
other compression techniques are left for future work.

4.3.4 KNN Transition Classification
K-nearest neighbors is an effective classification technique
when few labeled samples are available. We next define the
distance metric between feature vectors.

Let X = (x1...xm) and Y = (y1...yn) be image feature
vectors and Xt = (xt1...xtm) and Y t = (yt1...ytn) be the
corresponding trigger feature vectors. Ifm = n, the distance
between transition sequences is defined as follows,

d(X,Y,Xt, Y t) =
∑

i

|xi − yi|+ α
∑

i

|xti − yti| (1)

where α is a weighting coefficient. This coefficient helps to
favor samples with the correct direction. One issue with clas-
sification is the varying lengths of the transition sequences.
Transition sequence length depends on how many people
cross a transition area at walking speed. Rather than match
only with transitions of equal length, we also consider se-
quences within ±20%. If m > n then the distance is defined
as,

d(X,Y,Xt, Y t) = argmin
off

m−off
∑

i=off

|xi−yi|+α

m−off
∑

i=off

|xti−yti| (2)

where off is an offset that minimizes the distance when
the smaller vector subtracted from a subset of the larger
vector. Next we define how we choose from the k nearest
neighbors. Let M = {l0 · · · lk} be the set of k closest
labeled matches and D = {d0 · · · dk} be the corresponding
distances. Rather than classify based on the most frequent
label of M , we weight each label li by 1/di and choose the
label with the greatest summed weight.

4.4 OPTNet Evaluation
Next we evaluate the accuracy of the algorithm. For each
boundary, we gathered 48 hours of ground truth transition
sequence data. This data was gathered by manually ex-
amining the original images seen by OPTNet cameras and
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Figure 6: Overall accuracy over 24 hours as a func-
tion of training set size.

hand labeling each transition sequence. The first 24 hours of
ground truth is used for training. We trained each boundary
area with 150 transition sequences taken from different pe-
riods of the day. The remaining 24 hours of ground truth is
used for testing. For the weighting coefficient, we set α = 10
after trying several weighting factors. While it would be
preferable to gather data and test the system for different
times of the year to examine the performance, we leave this
as future work given the amount of time and effort required
to gather ground truth data. We explored many different
methods to help assist the gathering of ground truth data.
Initially we used a state of the art technique that can count
torsos and legs [24, 27, 18] to identify images that contain
people but found this was only able to identify 80% of the
images with people. Even the most advanced techniques are
not completely accurate and need manual correction. We
used a simple previous background subtraction technique to
identify images that contain moving objects and manually
processed these images.
In this section, we examine the directional and overall

accuracy. We define directional accuracy as number of tran-
sitions where the direction is classified correctly divided by
the total number of transitions. We define overall accuracy
as the number of transitions where the direction and num-
ber of occupants are classified correctly divided by the total
number of transitions. Figure 4 shows the transitions of two
different boundary areas over the period of 24 hours. In
both cases, we see that the classification of the KNN model
is very close to the ground truth. In particular, we see that
the directional error is very small. In the case of Hall 1, the
directional accuracy was 98.3% and the overall accuracy was
92.4%. Corner 1 had 8 incorrect directions (5 false positive,
3 false negative) out of 110 detected transitions (92.7%) and
an overall accuracy of 87.3%. For both cases, 150 training
examples were used. We also found that KNN classifier had
similar performance when applied to different transition ar-
eas using training data from different areas than the ones
being tested. Figure 4 shows the accuracy when applying
the classifier for a different transition area using 300 train-
ing examples. In this case we have a directional accuracy of
94.0% and an overall accuracy of 93.8%.
From a deployment perspective, a classifier can be sub-

stantially trained at a few transition areas and then applied
to other boundaries without requiring excessive data gath-
ering for training. Figure 6 shows the relationship between
training set size and accuracy for Hall 1. We took a random
subset of transitions from the training set and examined the
overall accuracy over 24 hours. Only 90 samples (roughly 45
each direction) are required to achieve above 90% directional
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Figure 7: A single transition error continues to affect
occupancy estimate.

accuracy. We found similar results for the other transition
areas. Transition areas near corners or highly variable light-
ing tended to have lower accuracy. In these cases, additional
training data would increase the accuracy as suggested by
Figure 6. More generally, one wants to position transition
areas where people are likely pass through and not loiter.
We also found it helpful to choose areas with less changes
of lighting; this cannot always be achieved since key tran-
sition points near exits must contain a transition area in
order to capture the occupancy of areas. We also found
that transition areas deployed in hallways performed better
than transitions placed directly in front of doorways. This is
because there is greater variation for the ways people tran-
sition through doorways. We also receive more and better
quality training examples for transitions through hallways
than for transitions directly in front of doors.

4.4.1 Occupancy Error
In order to evaluate the error of the system, we collected
15 days of ground truth occupancy data and compared it to
the system estimate of occupancy. The ground truth was
collected by examining all the images (≈ 150, 000) captured
by the system and manually annotating transitions between
the different areas.

While the individual errors of the transitions are low, the
effect of these errors is cumulative with respect to occupancy.
Figure 7 shows the effect a single transition error has on
occupancy. Some basic strategies can be employed to reduce
the magnitude of this cumulative error such as assuming
negative occupancies to be 0, imposing limits to maximum
occupancy, or assuming building occupancy to be 0 early in
the morning (4am). While this helps to reduce occupancy
error, if a room has a positive occupancy bias, it is possible
to have long stretches of time where a room is marked as
occupied when it is empty, which has a significant impact
on energy saving strategies. To address this issue, we use
a PIR wireless network deployment to help identify empty
rooms along with a particle filter.

5. BONET
Binary Occupancy Network (BONet) is a wireless sensor

network of PIR sensors deployed in each office. Each node
is comprised of a Tmote and PIR sensor (Figure 8). The
sensing area of the node is approximately 11 m2 when de-
ployed at a hight of 3 m. For single offices, a single node
provides adequate coverage. For larger areas such as the lab,
multiple PIR sensors were used. The PIR sensor is sampled
once per second and sends back the total number of triggers
every minute. Data was collected using low power listen-
ing [7] and timestamped using Flooding Time Synchroniza-
tion Protocol [23]. Out of the 34 nodes, 6 experienced false
triggering due to calibration issues. However, 3 of these
sensor were in the areas where redundant functional PIR
sensors were available. Figure 9 shows the accuracy for one
area. We found the system to have an accuracy of 94% for
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Figure 8: PIR node deployed on ceiling
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Figure 9: PIR accuracy compared with ground
truth.

the 28 functional nodes when compared with ground truth
data over a 48 hour period.

6. PARTICLE FILTER
We implemented a particle filter to improve the occupancy

estimation. The particle filter algorithm is a nonparametric
implementation of the Bayes filter [26]. The particle fil-
ter algorithm represents the posterior occupancy state of a
certain number of rooms by a set of random state samples
drawn from a predefined state transition model and assigns
weights according to a measurement model representing the
sensor accuracy. These random samples are called particles,
which are used to estimate the distribution of the posterior
state. Particles are defined as Xt = x1

t , x
2
t , . . . x

M
t where,

each particle xm
t is a vector representing a set of N rooms.

Each position in the vector represents a specific room occu-
pancy; xt = [r1, r2, . . . , rN ] where ri is the room occupancy
for room i.
Algorithm 1 shows the particle filter algorithm. Data from

BONet is used as pre-processing step. If BONet senses a
room is unoccupied and OPTNet indicates there is occu-
pancy, then the room occupancy is assumed to be 0; BONet
is more reliable than OPTNet for detecting empty rooms.
We define OBNet as the combined the OPTNet and BONet
system that fuses occupancy data as just described. The
particle filter is initialized with the previous particle set
Xt−1 and the current processed sensor output zt, coming
from OBNet. Time t in the particle filter represents the
current second of a day, starting at 1 second after midnight.
M denotes the number of particles in the particle set Xt. In
our experiments we tried various numbers of particles be-
tween M = 50 and M = 1000. For the results presented in
this paper, we use M = 100 particles.
The particle filter algorithm consists of three major steps:

1. sampling from the transition model; 2. calculation of the
particle weights; and 3. re-sampling.
The sampling step draws M samples from the transition

model. The transition model is represented by a blended
Markov Chain as described in [15] (see Appendix), where
each state xm

t−1 can reach one possible successor state x̂m
t

with a certain probability p(x̂m
t |xm

t−1),m = 1 . . .M .
The weight calculation step assigns a specific weight

wm,n
t to each value of each state given the estimation prob-
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Figure 10: Sensor output error distribution.

Algorithm 1 ParticleFilter(Xt−1, zt):

for m = 1 to M do

sample x̂m
t from TransitionModel(xm

t−1
, t)

add x̂m
t to X̂t

for n = 1 to N do

get w
m,n
t from Measurement(znt , x̂

m,n
t )

end for

end for

w̄
m,n
t = Normalize(wm,n

t ), m = 1 . . .M, n = 1 . . . N
for n = 1 to N do

draw xm
t with probability w̄

m,n
t from X̂t, ∀m ∈M

add xm
t to Xt

end for

return Xt

ability x̂m,n
t under the sensor measurement znt , for a specific

particle m of room n. In our case, the weight wm,n
t is deter-

mined by the measurement model, which is a distribution
of the difference between the occupancy ground truth and
the occupancy value of the processed sensor output of the
training data (see Figure 10).

The weight wm,n
t of a specific particle is now determined

by calculating the absolute difference between the model es-
timation x̂m,n

t and the processed sensor output occupancy
value znt ; x

m,n
tDiff = x̂m,n

t − znt . Based on the previously cre-

ated distribution, the weight wm,n
t of room n in particle m

is now determined by dividing the number of cases of dif-
ference xm,n

tDiff by the total number of cases. For example,

the observed number of cases with a difference of xm,n
tDiff = 1

between ground truth and processed sensor output is 5240
out of 864k cases, which is a weight of 0.06. This is done for
every room n within each state m of the transition model.

The re-sampling step draws with replacement M sam-
ples from the temporary particle set X̂t. Each estimation
is drawn with probability weight wm,n

t . This method of re-

sampling transforms the temporary particle set X̂t into an-
other particle set Xt. By considering the weight of each
estimated occupancy value in this step, the result is a dif-
ferent distribution since duplicates of values with a higher
weight wm,n

t are more likely to be part of the new distribu-
tion than values with a lower weight. The final result is a
matrix where each column represents a distribution of the
occupancy of a specific room. We obtain the final occupancy
state CurrOcc for a number of N rooms by averaging each
column over all states of the final particle filter result Xt.

CurrOcc =

M
∑

m=1

x
m,n
t

M
, ∀n ∈ N (3)

6.1 Particle Filter Results
Figure 11 shows the occupancy estimation by a particle fil-
ter, the direct sensor output of the OPTNet system. The
ground truth shows a meeting in the conference room start-
ing at about 10:30 am and ending at 11:50 am. The direct
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Figure 11: Occupancy over time for the raw sensor output and particle filter.
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sensor output of the OPTNet system estimates shows nega-
tive occupancy near the beginning of the day, which persists
until the meeting starts. Later in the day it overestimates
the room occupancy, due to positive cumulative error. This
happens between 15:00 and 00:00 when no one is in the
room. This error can lead to energy waste if we were to use
the direct sensor output of the OPTNet system alone.
The occupancy estimation of the particle filter, which uses

the fused OBNet sensor data and transition model, cor-
rectly estimates occupancy at around 10:30 am. Further
examination of these short occupancies show a janitor en-
tering/leaving the room. The particle filter tended to show a
lower prediction of occupancy than the actual ground truth
for the 10:30 am to 11:50 am period. This is because the
training data used for the model never experienced a large
number of people and the sensor gives a lower occupancy
number than the actual ground truth. This can be solved
using an extended training set for the transition model.
We use root mean squared error (RMSE) to evaluate the

occupancy estimation accuracy by the transition model, the
OBNet sensor data and the particle filter. Figure 12 shows
the RMSE for 6 different zones. For the conference room
and the computer lab, the sensor is more accurate than
the model; the sensor output is correcting the estimation
of the transition model within the particle filter. For the
office areas 1-3 and the robotics lab, the sensor output has a
large error caused by transitional bias. The transition model
for these rooms shows more accurate results and leads to a
slightly better result than the particle filter. Here, the model
estimation is correcting the sensor output within the parti-
cle filter. Since the error of the sensor is high in the case of
office area 1-3 and the computer lab, it is possible that the
estimation of the transition model alone is slightly better
then the particle filter. The particle filter gave an average
RMSE of 1.83 for our building.

7. ACTUATION SCHEDULER INTERFACE
The building being controlled utilizes both Automated Logic
and Phoenix BMS systems [19, 6]. The system is maintained
through a web server/interface called WebCtrl [19], which
can issue BACnet commands to the various HVAC compo-
nents including the variable air volume (VAV) unit. Since
the sequence of operations are stored on this server, the
building energy manager indicated that it would be prefer-

able to keep the logic of the system intact and change only
the temperature/ventilation set-points within the server logic
blocks rather than bypass the server and issue BACNet
commands directly. Since the server could accept set-point
changes via SOAP, we achieved control using python scripts.

7.1 Actuation Algorithm
As previously mentioned, near real-time occupancy is useful
for accurate ventilation. However, occupancy prediction is
necessary since time is required to reach the target temper-
ature of a room. In order to determine the minimum time
to reach a target temperature, determined the maximum
amount of time it was required to reach set-point given the
setbacks. Occupancy is predicted using the blended Markov
Chain approach used in Section 6 (see Appendix). The main
difference in application of the model is that predictions are
done 1 hour in advance rather than the 1 second into the
future done in for the particle filter. This is done since time
is required in order for HVAC systems to react.

Algorithm 2 Actuation Algorithm

CondTempi,j ← Room temp from time i to j
CurrHour ← Current hour
TTG ← Temperature such that PMV = 0
TASH ← Temperature such that −0.5 < PMV < 0.5
pThresh← Probability threshold of occupancy

BMC(CurrOcc, predLen)
Returns probability vector when occupancy is likely

ThermalDelay ← Time to reach TTG given TASH

- Program Start -
for Every n minutes do

CurrOcc← Current Particle Filter estimate of occupancy
occPred← BMC(CurrOcc, predLen)

for Each room r and point of time t in occPred do

occupied← Periods occPredt→t+60 > pThresh
if occupied > 5 minutes of next 15 minutes then

CondTempt−ThermalDelay,t+15 = TTG

else if 5 ≤ CurrHour ≤ 24 then

CondTempi,i = TASH

end if

end for

end for

Before we discuss actuation, we must first discuss Ameri-
can Society of Heating, Refrigerating and Air-Conditioning
(ASHRAE) standards for thermal comfort. ASHRAE Stan-
dard 55 [9] uses the predicted mean vote (PMV) metric to
establish levels for occupant comfort. This metric incorpo-
rates multiple parameters such as humidity and airflow to
estimate occupant comfort on a continuous scale from -3
to 3, where negative values indicate slightly cool to cold (-
1 to -3) and slightly warm to hot (1 to 3). The optimal

210



temperature corresponds to PMV = 0. ASHRAE states
that acceptable room conditions are temperatures such that
−0.7 ≤ PMV ≤ 0.7. For our deployment we choose more
conservative temperatures where −0.5 ≤ PMV ≤ 0.5.
Algorithm 2 shows how we combine the current occupancy

determined by the particle filter, predicted occupancy deter-
mined by the transition model, and the estimated thermal
ramping time (estimated from historical data) in order to
schedule when to begin conditioning. There are two temper-
ature set-points; TTG and TASHRAE , which are the target
and ASHRAE set-points respectively. The algorithm pur-
pose is to change these set-points optimally based on room
usage. Every n minutes (15 minutes for our deployment) we
check the current occupancy state of the rooms. We then
make a prediction predLen (60 minutes) into the future us-
ing the transition model. We examine each the predicted
occupancy probability for each room. If we find a window
of time where the room will be occupied 5 minutes out of
the next 15 minutes, we use the experimentally determined
thermal delay (time required to reach the target tempera-
ture), and schedule the set-point to the target temperature.
Otherwise, we condition to the ASHRAE set-point. This
ensures the room will be at a reasonable temperature if a
prediction is false.

8. POEM SYSTEM EVALUATION
There are two aspects of the system to be examined. The
first is that rooms are conditioned appropriately given actual
occupancy usage. The second is to determine how much
energy could be saved when applying the strategy to the
floor of a building.
We tested two versions of POEM in a live deployment.

The first strategy uses only PIR for occupancy detection and
the same actuation using binary occupancy data. PIR data
does not have issues with cumulative error, hence a particle
filter is not used. Since PIR cannot determine how many
people are in an area, ventilation control is done assum-
ing maximum occupancy; an occupied room is assumed to
be fully occupied. This is equivalent to baseline ventilation
strategy. This is common practice since HVAC designers
and building managers tend to be over cautious with re-
spect to ventilation. Indeed we found many areas that were
over-ventilated with respect to even maximum occupancy.
The second strategy uses OBNet (Camera and PIR data)
along with the particle filter. Ventilation in this case is done
according to ASHRAE 62.1 [10]. Each strategy was tested
for two weeks for 16 zones (2 AHUs), accounting for 30% of
the area that the AHUs condition. Approximately 52 people
occupy these areas and occupants in the area were informed
of the camera use with the experiments and the data col-
lected during our experiments has been handled following
best practices [5, 2].
Table 1 shows size of each zone and how long each zone

takes to get to temperature from the setback temperature.
To evaluate the performance of the system over the course

of a year, we developed a calibrated EnergyPlus [3] simu-
lation that closely matches the performance of the actual
building. This was done using 6 weeks of historical data
from the building from different seasons; 2 weeks Fall, 2
weeks Winter, 2 weeks Summer. Each day was compared
with a similar day from the EnergyPlus simulation with re-
spect to weather/temperature. On average, the EnergyPlus
simulation had a normalized RMSE of 6.2%. With a cali-
brated model, we are able to accurately determine the per-

Ramping
Area Duration

Conference Room 40 m2 45 min
Office Area 1-9 36 m2 30 min
Computer Lab 111 m2 60 min

Conference Room 40 m2 30 min
Dean’s Conference Room 52 m2 30 min

Robotics Lab 18 m2 30 min

Table 1: Zone information for deployment. The
Ramping duration is the time required to reach the
target temperature from the setback temperature.

formance of these strategies under exactly the same condi-
tions; without a model, we would be required to run each
system for potentially years for enough data for a valid com-
parison. Using the calibrated model, we test four different
strategies. Two strategies tested are the same PIR and Cam-
era/PIR strategies as the live deployment. In addition, we
test a reactive strategy where rooms are conditioned imme-
diately once occupied without predictive temperature ramp
up. Similar to the predictive PIR approach, we assume max-
imum occupancy when the room is occupied for ventilation
purposes. The last strategy is an “Oracle” strategy, where
we condition the space assuming perfect prediction and per-
fect measurement of occupancy. The oracle strategy gives us
an upper bound of the energy savings that is possible if the
Camera/PIR system were to run with perfect information.

8.1 Energy Savings
Our building is conditioned from a centralized chilled water
tower and boiler systems. The chilled water tower stores
water within a tank large enough for stratification to occur;
warmer water naturally rises to the top and cold water falls
the bottom of the tank. Cold water is supplied by pump-
ing water at the bottom of the tank. Additional cooling is
supplied to the tank as necessary. The hot water is supplied
by several hot water boilers. The chilled water tower boilers
supply the hot/cold water to air handler units (AHU) and
variable air volume units (VAV) for heating and cooling.
The AHU is used for air cooling the air. The VAV units are
used for heating and regulating cool air to individual zones.
This is done by using a damper to regulate the air volume
that passes over heating/cooling coils. For our deployment,
we are interested in how much energy the VAV units and
AHUs are consuming.

The amount of energy lost/gained by the coil is equal
to the amount of energy lost/gained by the air. We can
estimate the energy consumed by a VAV or AHU using the
heat balance equationQ = mC(Tsa−Tda), whereQ is energy
transferred to the air, m is the total mass of the airflow over
an interval of time, C is the heat capacity of air, Tsa is supply
air temperature, Tda is the discharge temperature of the air
after passing through the coil. By measuring the airflow and
the supply and discharge temperatures, we can calculate the
energy consumed.

8.2 Live Deployment Results
The baseline strategy of the building is a static schedule

where the room HVAC system (temperature/ventilation) is
turned on at 6 am and then shut off at 1 am the next day.
From 1 am to 6 am, room temperatures “float”. In order
to measure the amount of energy consumed by the baseline
strategy, we measure the energy consumption of the system
without POEM running. Days with similar weather and
temperature profile are used for the baseline comparison.
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Figure 13: Energy consumption breakdown for 7 representative days. PIR and camera/PIR based POEM
saves on average 21.1% to 26.0% respectively.
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Figure 14: Energy consumption based on calibrated energy simulation. On average PIR and Camera based
strategies save 24.5% and 31.0% annually respectively.

Figure 13 shows energy savings and breakdown for one
particular week for both strategies. The left and right bar
for each day shows the baseline and strategy breakdown re-
spectively. Above each strategy, we show the percentage
savings over the adjacent baseline bar. Since the experi-
ments were conducted during the summer, no zone required
heating. In general, the energy from the supply and return
fans along with the hot/cold water pump remained fairly
constant. Overall PIR and Camera/PIR saved on average
21.1% and 26.0% respectively. For both strategies, the most
savings occurred on the weekend where many zones were
unoccupied. For weekends, the PIR only strategy saved
25.1%-27.5% and the Camera/PIR strategy saved 30.2%-
32.0%. On the weekdays, PIR saved 13.8%-18.0% and the
Camera/PIR strategy saved 16.0%-22.5%. For areas that
are consistently occupied with regular schedules, the savings
were achieved by turning off the system earlier than the 1 am
shutoff time, or delaying the ramp-up in the morning. The
difference between these strategies is due to ventilation rate.
Since the Camera/PIR strategy is able to reduce ventilation
rates, this strategy is able to save more energy than predic-
tive PIR strategy. For other areas not consistently occupied,
such as the conference room, energy savings were possible
in the morning where the temperature ramp-up could be
delayed and in the evening when the room was unoccupied.
The Camera/PIR strategy saves more energy since ven-

tilation is based on the number of people whereas the PIR
only strategy ventilates based on the maximum occupancy.
Ventilation has a significant impact on energy consumption
since increasing ventilation increases the amount of outside
air to be condition. This is similar to trying to cool a house
down on a hot summer day with the front door open.

8.3 Calibrated Model Results
As previously mentioned we also test four different strate-

gies using the calibrated model. Figure 14 show the energy
savings and breakdown for each strategy. When we compare

the live results to the calibrated model results, we see sim-
ilar energy savings for the periods of similar weather. For
the predictive conditioning, we saw 21.1% average savings
for live deployment and see 19.3% for the calibrated model.
We also see a similar difference between the PIR and Cam-
era/PIR strategies for the calibrated model as compared
with the live deployment. For the live deployment we saw
difference of 4.9% (Camera/PIR 26.0% vs PIR 21.1%); the
calibrated model showed a difference of 4.2%. These results
supports our initial results (normalized RMSE of 6.2% be-
tween model and historical results) and that our calibrated
model is able to accurately measure energy differences be-
tween strategies.

When comparing the predictive PIR and reactive PIR
strategies, we see similar results; we only see a maximum
difference of 1.1% during the coldest months (Dec, Jan). A
priori one would expect the predictive strategy to use slightly
more energy since it conditions spaces over longer periods
of time due to the fact that is trying to anticipate expected
occupancy (i.e. load). Interestingly, the predictive PIR has
slightly higher energy savings. The predictive PIR indeed
conditions a larger total amount of time than the reactive
PIR strategy; on average the predictive PIR conditions on
average 1.2 hours more per day per room compared with re-
active PIR. However, the temperature differential from the
initial to the final conditions for any period of occupancy is
on average smaller for predictive than the reactive strategy.
On average the temperature difference between the target
and actual room temperature when occupants initially oc-
cupy a room is approximately 0.08 Co (0.15 Fo) for predic-
tive PIR and 1.7 Co (3.0 Fo) for reactive PIR. The reactive
strategy has to work harder to ramp up the room temper-
atures between periods of occupancy; in some cases, it is
more energy efficient to maintain temperature than to ramp
up temperatures from a very low level. As we’ll see in the
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Figure 15: RMSE (Fo) between the target and observed room temperatures

following section, this also dramatically impacts tempera-
ture effectiveness as perceived by the building’s occupants.
The predictive PIR and the Camera/PIR strategies show

24.5% and 31.0% annually respectively, with the largest sav-
ings occurring during the coldest months. The main cause of
this difference is the ventilation. We also see how ventilation
plays a major role in the energy savings when comparing the
Camera/PIR strategy to the Oracle strategy. In general the
predicted schedules from the Camera/PIR strategies closely
match the Oracle strategies (3% difference). One major dif-
ference, which is discussed in more detail in section 8.4,
is that the Camera/PIR has additional ventilation added
in order to account for possible errors in the occupancy
count. When comparing Oracle and Camera/PIR results,
we see that the Oracle saves 33.0% whereas Camera/PIR
saves 31.0%. Further analysis of the energy traces shows
that this difference is indeed due to over-ventilation by the
later due to the small uncertainty in occupancy (i.e. a safe
guard band added it by design to cope for potential under-
counting). This can be seen in Figure 17 where we see that
the PIR/Camera strategy is above the required ventilation
rate for the majority of the time.

8.4 Conditioning Effectiveness
In this section, we examine the conditioning performance of
POEM. We are interested how close operational tempera-
tures were to the target temperature during times of occu-
pancy and how effectively we could reduce ventilation rates
using occupancy.
To evaluate the thermal effectiveness of POEM, we calcu-

late the root mean squared error (RMSE) between the tar-
get temperature and the observed room temperature during
the periods of when the room is occupied. For this analy-
sis, we will only examine the Camera/PIR strategy as we
only gathered ground truth data for the days of the Cam-
era/PIR deployment. It is difficult and time consuming to
process ground truth and was too labor intensive to process
additional days. In order to have a basis of comparison,
we also consider the ability of the baseline strategy to meet
target temperatures. In most cases, the baseline tempera-
ture deviates approximately 0.6 Co (1 Fo) from the target
temperature. This is expected as the proportional-integral-
derivative (PID) controller of the VAV will cause the tem-
perature to oscillate with a small amplitude from the target
temperature. Figure 15 shows the overall RMSE for each
room. Of particular interest is the temperature of the con-
ference room as this room does not have a consistent sched-
ule and most likely to deviate from target temperatures.
In this case, the RMSE of POEM is on average 0.25 Co

(0.45 Fo) whereas the average RMSE of the baseline strat-
egy is 0.21 Co (0.38 Fo). As this is only a difference of about
0.07 Co (0.12 Fo), we can see that the conditioning effective-
ness of POEM is close to baseline. This room tended to be
farther from the target temperature for both baseline and
POEM strategies since the conference room has two exterior
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Figure 16: RMSE (Fo) between the target and
observed room temperatures from the calibrated
model.

walls and receives solar gain. For areas with regular sched-
ules, we found POEM’s ability to condition comparable to
the baseline strategy; in most cases, the difference between
POEM and baseline RMSE is less than 0.06 Co (0.1 Fo).

In addition to the actual results we also examined the ther-
mal effectiveness of the reactive and Camera/PIR strategies
from the calibrated model. Figure 16 shows the RMSE for
each strategy for the conference room. The Camera/PIR
has substantially better performance than the reactive ap-
proach; the Camera/PIR approach has an average RMSE of
0.52 Co (0.93 Fo) whereas the reactive approach has an aver-
age RMSE of 0.83 Co (1.5 Fo). This is expected since time
is required for rooms to ramp to the target temperature.
This is especially true during the warmer months where so-
lar gain can greatly affect the ability of the HVAC system to
meet load. During these months (Jun-Sept), the RMSE of
the reactive system is 0.83-1.33 Co (1.5-2.4 Fo), which can
easily be perceived by occupants. Thus, the Camera/PIR
approach is better able to meet the target temperatures.

ASHRAE standard 62.1 [10] requires the outdoor ventila-
tion to be Vbz = RpPz+RaAz where z denotes the zone, Vbz

is the ventilation rate, Rp is the minimum CFM (1 CFM =
1 ft3/min) per person, Pz is the number of people, Ra is
the minimum CFM/ft2, and Az is the floor area. Ra and Rp

changes depending on the target use of the room as specified
by the ASHRAE 62.1 standard. This standard is for areas
without a demand ventilation system. For our rooms, the re-
quired CFM per person is 5. Examining Figure 17, we can
see that a typical baseline ventilation strategy is far more
inefficient than POEM. Office 1 under-ventilated 1%. Dur-
ing these periods of under-ventilation, the average under-
ventilation was 2.5 CFM. As 5 CFM is required per person,
the magnitude of the under-ventilation is not large. The
lab is theoretically under-ventilated an average of 2.98 CFM
4.8% of the time. When examining the actual CO2 levels,
we found the areas were properly ventilated. In order to
evaluate proper ventilation, we examine the CO2 levels with
respect to the ASHRAE 62.1 demand response ventilation
standards. This standard states 925 ppm is considered ac-
ceptable for office spaces. Figure 17 shows the CO2 levels
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Figure 17: Ventilation and CO2 levels

for the most densely occupied area in the deployment, which
is the conference room. For the day shown, several groups
meet back-to-back. From the figure we can see that the lev-
els never exceed 925 ppm showing that adequate ventilation
is being provided. We can also see that the Camera/PIR
strategy has slightly higher levels since the strategy pro-
vides less ventilation, but is well under the threshold (600
ppm vs 925 ppm). This suggests the ventilation provided by
the previous equation is above what is actually required.

9. RETURN ON INVESTMENT ANALYSIS
In this section, we use our results in order to estimate whether
deploying POEM is economically viable. We extrapolate our
results to the entire building, which contains a base area of
6,689 m2 and is primarily used for research labs and of-
fices. The building has an annual energy consumption for
conditioning of 5,275,992 kWh electrical power and 246,000
therms of gas. The cost for electrical energy depends on
the time of a day and season, it is usually between $0.13
and $0.18 per kWh, the price for gas is constant over the
year at $0.7 per therm of gas. All these prices are special
rates negotiated with a utility company. For reference, the
same company charges $0.34 and $0.22 per kWh for res-
idential and commercial customers. For an average price
of $0.15 per kWh electrical power and $0.7 per therm gas
the annual conditioning costs of the mentioned building are
$963,598.80. One node of our system consists of the compo-
nents listed in Table 1, which sums up to a price of $710 for
camera and $215 for PIR nodes. This cost can be reduced
through commercial production.
We estimate that each node costs $35 to deploy, and $8k

is required for testing the system. For a 3 story 6,689 m2

building, about 65 camera nodes and 360 PIR nodes are
required to provide complete coverage. Therefore manufac-
turing and deploying the system would cost approximately
$147k. Savings of 26% of $963k equals to $250k per year
or $20.8k per month. The largest ongoing cost for our sys-
tem is battery maintenance. A conservative estimation of
the energy consumption of a camera node is about 80mW;
with three battery packs with a capacity of 11 Ah each, the
battery packs have to be exchanged and recharged every 60
days. Since the energy consumption of a PIR node is low
compared to a camera node, a PIR node is able to run 175
days on one battery pack rather than 60 days. This results
in a maintenance cost of about $30 per camera node per

Table 2: Prices of camera and PIR nodes
Component Price Component Price
Imote2 $350 Tmote $120
IMB 400 $250 PIR sensor $30
Batteries $100 Batteries $60
Fisheye lens $5 Assemble (10 min) $5
Assemble (10 min) $5

$710 $215

year and about $10 per PIR node per year. For the whole
65 camera and 360 PIR node system, this would cost $5,500
for maintenance each year. Depending on the market price
for energy, the manufacturing and deployment costs of our
system would be amortized between 6.1 and 8 months. The
energy savings of a system with PIR sensors only are about
21.1%. This would result in an average amount of $203k for
energy savings and an amortization time between 4.8 and
6.4 months due to the reduced system costs of $94k and
maintenance costs and $3,800 per year. As shown in Figure
18, a system consisting of only PIR sensors has a shorter
amortization time compared to a system with camera and
PIR sensors. Since buildings are usually operated for many
years (70-75 years [1]), in the long term, a combination of
camera and PIR sensors always achieves higher savings.

These results also show that despite the extra work of
adding cameras, the savings are significant to justify the ad-
ditional effort. This is due to the magnitude of the money
currently spent on energy. Though the difference of the en-
ergy savings between PIR and Camera/PIR is only 5%, this
still constitutes a non-trivial amount of money. For perspec-
tive, over a 5 year period, the Camera/PIR system saves
approximately $140k-$200k more than PIR alone (see Fig-
ure 18). Over the average lifetime of the building, which
is approximately 70 years, the system can potentially save
$15.0M to $20.0M.

10. LESSONS LEARNED
We found that deploying, testing, verifying the performance
of the system to be extremely difficult. For the camera sys-
tem testbed, a customized Imote2 debug board was designed
and manufactured for each of the 22 cameras. For the PIR
sensors, 40 nodes had to be hand “manufactured” and de-
ployed after negotiating with facilities, staff and students.
In particular, facilities required us to have CO2 monitoring
before we could proceed. In order to achieve this, we devel-
oped a wireless network of 10 CO2 nodes using Tmotes and
CO2 sensor boards.

One of the most time consuming part was the processing
of ground truth data. We tried multiple techniques to speed
up the processing of the image data. Initially, we tried using
state-of-the art techniques that counted torsos and legs [24,
27, 18] in order to detect the presence of humans. We found
even the best techniques were only about 80% accurate and
in the end found background subtraction a much more reli-
able method of identifying images with occupants. We also
tried various types static background techniques but found
that when people loitered of left static objects such as chair
and boxes, this would dramatically increase the number of
images needed to be manually examined. The most effec-
tive method we found for detecting transitions is similar to
the one presented previously. We use previous frame back-
ground subtraction in order to identify images where objects
are moving and then manually process this data. After ap-
plying this technique to the images, each camera produces
1000-3000 images per day that potentially contains transi-
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Figure 18: The left compares savings for different energy prices. The right shows savings over 80 year period.

tions. Processing the ground truth required examining ap-
proximately 150,000 images.
Despite having deployed in a new building with a BMS, we

experience multiple difficulties with regards to instrumenta-
tion. For several zones, we found that during construction,
temperature sensors were left out of VAV boxes. This re-
quired us to deploy commercial wireless temperature sen-
sors so we could measure the exhaust air temperature; this
was accomplished by examining the plans, locating the VAV
boxes, obtaining permission from facilities to install sensors,
and physically drilling duct holes and mounting the sensors.
Calibration of the duct flow sensors was also an issue. While
testing the system, we found the AHU flow measurements to
be faulty with respect to other air flows measurements. For
several months, multiple calibrations were performed and
some flow sensors had to be replaced by facilities. Flow sen-
sor measurements need to be verified prior to deployments.

11. CONCLUSIONS
In this paper, our main contribution is the design and im-
plementation of POEM, a close loop system that conditions
rooms based on occupancy on a real production building.
POEM uses two wireless sensor networks; one network of
cameras called OPTNet, and another network of PIR sen-
sors called BONet. We showed that OPTNet is capable of
detecting transitions with up to 94% accuracy and that the
system is able to generalize to different locations. Com-
bined with BONet and a particle filter, we can bound the
error of occupancy within 1.83 people on average for our
building. By opportunistically controlling the HVAC sys-
tem based on occupancy, we showed savings of 26.0% are
possible while maintaining conditioning effectiveness. Us-
ing a calibrated model, we estimate that ≈ 30% savings are
possible annually. Given the cost of heating and cooling,
we show that these savings would amortize the POEM sys-
tem within about 6 to 10 months. This work is an initial
foray into designing sensor networks for smart sustainable
buildings. By providing greater value from the same physi-
cal plant, our approach can move beyond cost-to-build and
cost-to-operate metrics to broader return-on-investment for
new technologies.
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APPENDIX

A. MARKOV CHAIN MODEL
A Markov Chain (MC) framework is used to model the

temporal occupancy dynamics of the building. States of
the MC are the room occupancies of the building where the
transitions among states occur with a probability dependent
on time. This is described in detail in [15].
This framework allows the occupancy prediction t+∆t in

the future given the occupancy distribution at time t. This
is done by multiplying the ∆t times of the transition matrix.
Each state of the MC is defined using a vector of building
room occupancies (Figure 19). Let R represent the set of
n rooms within a building. If we assume a maximum occu-
pancy for each room in R, then we define S = {s0, ..., sm} to
be the set of all combinations of room occupancy where m
is the total number of states. Thus, S represents all observ-
able occupancy states that can be represented by a given
the maximum occupancy constraints of rooms in R. As the
number of rooms increases, the total number of observable
states increases exponentially. In order to reduce the total
state space, the MC is defined only using states observed
during training.
Next we define transition probability matrix. Let the tran-

sition probability of moving from state j to i be represented
by pij and Xt represent the occupancy state at time t. We
calculate pij = P (Xt+1 = i|Xt = j) for each state in S. The
time step of the MC represents 1 second, which is deter-
mined by the training data resolution. The transition prob-
abilities are estimated by normalizing the transition counts:
pij = nij/

∑m

k=1
nik where nij is the number of times a

transition from state i to state j in the set.
Room occupancy varies depending on the time of the day

and must be a component of the model. We incorporate
time by defining multiple transition matrices that govern
the state changes within different time windows, defining an
inhomogeneous MC. Since our state space only considers the
states observed in the training state rather than all possi-
ble states it is possible to have discontinuities at the slot
boundaries. Assume data is partitioned into hourly transi-
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Figure 20: Blending the transition matrices.

tion matrices and we are predicting occupancy for hours h
and h + 1. Suppose we are in some state X and the hour
changes from h to h+1. At this point the model switches to
the hourly transition matrix for h+1. It is possible the tran-
sition matrix h + 1 has no probability for occupancy state
X. If X does not occur in hour h + 1 of the training data,
the transition probabilities for X cannot be calculated.

A.1 Blended Markov Chain
A blended Markov Chain (BMC) is a framework that

avoids the discontinuities at the slot borders. This is done by
ensuring that a transition probability for the current state
always exists by blending each transition matrix into a sin-
gle state space containing all the states from the training
set. Let the day be partitioned into K parts. Thus, we have
K transition matrices T1 . . . TK each with m states. These
K transition matrices are then linearly combined to con-
struct K blended transition matrices T 1, . . . , TK . The slot
t blended transition matrix is then expressed as
T t =

∑K

s=1
βtsTs where βt1, . . . , βtK are positive and sum

to one; this is done to ensure that T t is a valid transition
matrix. These coefficients are approximately 1 for close slots
and quickly decrease to 0 for farther slots. This is done by
defining the coefficients as

βts =
α(ct − cs)

∑K
s′=1

α(ct − cs′ )
(4)

where ct, cs are the centers of slots t, s, and with a “slot”
function

α(x) = σ

(

2a

d

(

x+
d

2

))

− σ

(

2a

d

(

x−
d

2

))

x ∈ R (5)

where σ(x) = 1/(1+e−x) (the sigmoid function), a > 0 is the
slope at the slot boundaries and d > 0 is the slot width. The
sigmoid is monotonically increasing where σ(−x) = 1−σ(x).
Thus α(x) is positive and symmetric around its center. Fig-
ure 20 shows several slots. Using this construction, each
state in the blended transition matrix T s incorporates data
from all slots, but heavily favors slot s. Our model utilizes
K = 48 (half our slots) with slot width d = 3. We set
a slope of a = 10 and choose the ck to be center of the
current hour. Figure 20 shows the blending coefficient for
these parameters. These parameters create overlapping slot
boundaries, increasing the number of preferred states avail-
able for transitions and minimize the probability of transi-
tioning to a state completely outside the slot boundaries.
States within a given hour are given higher weights are and
states from adjacent half-hour slots are somewhat consid-
ered. States completely outside this time frame are given
very low weight.
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